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Abstract

Based on a standard epidemiological model, we derive and apply empirical tests of the hypothesis
that contacts, as proxied by mobility data, have an effect on the spread of the coronavirus epidemic,
as summarized by the reproduction rates, and on economic activity, as captured by subsequent initial
claims to unemployment benefits. We show that changes in mobility through the first quarters of 2020,
be it spontaneous or mandated, had significant effects on both the spread of the coronavirus and the
economy. Strikingly, we find that spontaneous social distancing was no less costly than mandated social
distancing. Our results suggest that the rebound in economic activity when stay-at-home orders were
lifted was primarily driven by the improvement in epidemiological parameters. In other words, without
the reduction in the reproduction rate of the coronavirus, we could have expected a doubling down on
spontaneous social distancing.
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1 Introduction

By the end of March 2020, nearly four months after the first detection of significant coronavirus

infections in China, most advanced economies adopted measures restricting people’s movements

and activity on their territory, introduced tough controls at their borders, and mandated norms

implementing social distancing. If only with some delay, governments converged on the idea that

some restrictions were required to reduce the human cost of the disease—strongly influenced by

early scenario analyses in which an uncontrolled and rapid spread of the disease would have

overwhelmed national health systems and caused a sharp rise in mortality rates.1 At the same

time, mobility fell precipitously (although not uniformly across locations) as individuals took

precautions. During the subsequent months, contagion and death rates, while high, turned out

to be much lower than indicated by these early scenario analysis, as social distancing, whether

mandated or spontaneous, became widespread practice.

A key question in academic and policy debates concerns the extent to which social distancing

is effective in reducing contagion and mortality, and, most crucially, whether, for given epi-

demiological effects, the economic costs of social distancing can be expected to be lower when

driven by individual decisions, as opposed to policy measures. These questions are obviously

complex, as the evolution of the disease over time responds to a number of factors, including

environmental factors (e.g., extreme hot or cold weather may bring people to to spend more time

indoors), mutation in the virus (at the end of 2020, a new surge associated with more infectious

variants of the virus motivated once again the widespread adoption of strict lockdown policies)

as well as the adoption and efficacy of precautions (such as wearing masks or washing hands) in

social contacts. With these considerations in mind, we exploit cross-sectional epidemiological,

institutional and mobility data for the U.S. states, to derive a test of the epidemiological and

economic effects of social distancing—distinguishing the latter depending on its spontaneous or

mandated origin.

We show that changes in mobility through the first quarters of 2020 slowed down both the

spread of the coronavirus and economic activity, regardless of whether these changes stemmed

1 Among the leading papers that have formalized this view ealry on, see Eichenbaum, Rebelo, and Trabandt (2020), Jones,
Philippon, and Venkateswaran (2020) and Alvarez, Argente, and Lippi (2020). The literature on the economic effects of the
COVID-19 pandemic has grown very fast, see Atkeson (2020), Alfaro, Chari, Greenland, and Schott (2020),Baker, Bloom,
Davis, Kost, Sammon, and Viratyosin (2020), Guerrieri, Lorenzoni, Straub, and Werning (2020), and Koren and Petó (2020)
among many others.
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from individual or policy decisions. Strikingly, our evidence suggests that spontaneous social

distancing was no less costly than stay-at-home orders.

We derive our empirical framework from the standard epidemiological model. We test the

null hypotheses is that contacts, as proxied by mobility data, have an effect on the spread of

the epidemic, as summarized by the reproduction rates, and economic activity, as captured by

initial claims to unemployment benefits. Our sample consists of state-level data for the United

States from March through September 2020. We proxy contacts using Google mobility data,

and instrument mobility with either the stay-at-home orders issued by individual U.S. states, or

political leanings as captured by the share of the vote for the Republican presidential candidate

in the 2016 elections by state. Specifically, in a first test, we run a panel regression model instru-

menting changes in mobility with stay-at-home orders, taking advantage of the different timing

of these orders across states. In a second, cross-sectional, test, we investigate the evolution of

contagion in the two-week period in March 2020 that preceded any mandatory measures at the

state level. This sample choice implies that all observed variation in mobility stems from sponta-

neous decisions. Google data suggest that, while much of the reduction in mobility had already

occurred by the time the first stay-at-home order was imposed, this initial mobility reduction was

far from homogeneous across states. We instrument mobility with political leanings, drawing on

the results by Gollwitzer et al. (2020), who document a correlation between these leanings and

the spread of COVID-19. Given our focus on the first part of March, before the introduction

of mandatory measures, we collapse the time dimension of our initial panel regression and rely

only on the cross-sectional variation at the state level. As epidemiological outcome, we use,

alternatively, the reproduction rates estimated by Fernández-Villaverde and Jones (2020) and

the rates estimated by Systrom, Vladek, and Krieger (2020).

Our main results are as follows. Concerning mandatory social distancing, based on our panel

analysis, we find that, at the first stage of our regression model, stay-at-home orders push up the

residential mobility index 1.85 percent (capturing an increase in time spent at home). At the

second stage, a 1 percent increase in the instrumented residential mobility reduces the running

reproduction rate about 3.5 percent, all else equal. Putting these two estimates together, on

average, the stay-at-home orders led to a decline in the reproduction rate of about 1.85×3.5 ≈ 6.5

percent. In other words, starting from a basic reproduction rate of 2, the stay-a-home order

would reduce it to about 1.9. Correspondingly, our regression results point to an increase in
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the unemployment rate of roughly 0.3 percentage point for every week that the stay-at-home

orders were in force. With a median duration of 6 weeks and the orders applying to much of the

country, this could account for about a 2 percentage points rise in unemployment.

Our estimates imply that most of the fall in mobility was linked to spontaneous social

distancing—a point stressed early on by Goolsbee and Syverson (2021). To study the effect

of spontaneous distancing, we take advantage of the fact that no mandatory measures were en-

acted in the 14-day period through March 17 2020, two days before the first stay-at-home order

went into effect in California. Remarkably, for the initial claims to unemployment benefits, the

elasticity estimated in this exercise for spontaneous social distancing is close to the corresponding

elasticity estimated from mandated distancing (our point estimates are, respectively, 0.15 and

0.17). At the margin, social distancing, whether spontaneous or not, has analogous economic

effects. However, the elasticity of the reproduction rate to spontaneous mobility reductions is

lower (our point estimates for spontaneous and mandated social distancing are, respectively, 2.3

and 3.5). In other words, for the same economic impact, a decline in spontaneous mobility leads

to a smaller decline in the reproduction rate. Or, to put it in another way, the economic costs

of containing the reproduction rate are no lower for spontaneous than for mandated reductions

in mobility.

These findings suggest that, while economic activity rebounded as stay-at-home orders were

lifted, this rebound was possible in large part because of the improvement in the epidemiological

parameters—that is, without the observed reduction in the reproduction rate of the coronavirus,

we could have expected a doubling down on spontaneous social distancing. Our analysis cannot

rule out nonlinearities such that the marginal costs of reducing the spread of the disease rises

progressively with the reduction in mobility. However, one may note that, since spontaneous

social distancing preceded the imposition of stay-at-home orders, such non-linearities would not

undermine our main conclusions.

Several other papers have sized empirically the economic effects of mandated social distancing,

including Allcott et al. (2020) and Coibion, Gorodnichenko, and Weber (2020). Our approach

is closest to Gupta et al. (2020), who also use a difference in difference approach to size the

effects on the labor market. Our framework helps us distinguish between the direct effects

of the structured policies through reduction in mobility and outcomes related to spontaneous

social distances predating the policies. Goolsbee and Syverson (2021) also rely on a difference
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in difference estimation method but use more capillary data at the local level. Nonetheless,

their results on the economic effects of mandated social distancing are broadly in line with ours.

Alternative approaches to estimating the effects of mandated social distancing measures are

offered by Chernozhukov, Kasahara, and Schrimpf (2021) and Huang (2020). They focus on

epidemiological effects, whereas we are also interested in a comparison of the epidemiological

benefits and of the economic consequences of mandated and spontaneous social distancing.

The rest of the paper is structured as follows. Section 2 sets the stage for our analysis by

providing and discussing evidence on the dynamic of the COVID-19 pandemic in the United

States in the first three quarters of 2020, and the effects of social distancing on the spread of the

disease and unemployment across U.S. states. Throughout our analysis, we will make extensive

use of mobility data to approximate social distancing and trace its effect on the economy. Section

2 describes a one-group SIRD model—capturing how a disease spreads by direct person-to-person

contact in a population. Section 3 reviews stylized facts on the diffusion of the disease over time

and across states in the United States, including data on mobility and health measures adopted

at state level. Drawing on the SIRD model, Section 4 specifies a simple econometric framework

and provides evidence on the effects of social distancing on the dynamic of the pandemic and

employment.

2 A Baseline One-Group SIRD Model

The one-group SIRD model in this section follows Fernández-Villaverde and Jones (2020) —

broader introductions to epidemiological modeling are given in Hethcote (1989), Allen (1994),

and Brauer, Driessche, and Wu (2008). Time is discrete and measured in days. At every instant

in time, the total population N is divided into the classes of:

1. susceptible St consisting of individuals who can incur the disease but are not yet infected;

2. infective It consisting of individuals who are infected and can transmit the disease;

3. resolving Rt consisting of sick individuals who are no longer infective;

4. recovered (or, equivalently, cured) Ct consisting of individuals who have recovered from the

disease;

5. dead Dt consisting of individuals who died from the disease.
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This model differs from the standard SIRD model by distinguishing between the infective and

the resolving class. Fernández-Villaverde and Jones (2020) found this distinction necessary to

obtain a good model fit in their empirical application to U.S. data.

An important assumption of standard SIRD models is that “law of mass action” applies: The

rate at which infective and susceptible individuals meet is proportional to their spatial density

StIt. The effective contact rate per period βt is the average number of adequate contacts per

infective period. An adequate contact of an infective individual is an interaction that results in

infection of the other individual if that person is susceptible. Thus, βt can be expressed as the

product of the average of all contacts qt and the probability of infection (transmission risk) given

contact between an infective and a susceptible individual, µt.

It is important to note that the effective contact rate is not constant but can vary over

time for a number of reasons. First, an individual’s number of contacts, qt, can drop in a

pandemic because of mandated social restrictions (e.g., school closures, closures of shops and

restaurants, stay-at-home orders) or voluntary adjustments of behavior (e.g., online shopping

instead of in-person shopping, refraining from attending larger gatherings). As both mandated

and spontaneous contact restrictions may take place simultaneously, it may be challenging to

disentangle their effects on βt. We may note, however, that from the perspective of our study

restrictions have an impact on the economy regardless of whether they are mandated or spon-

taneous in nature. Second, the probability of infection given contact between an infectious and

a susceptible individual µt can vary over time. In the case of COVID-19, this probability is

influenced both by human behavior (e.g., masks, keeping sufficient physical distance) and by

the characteristics of the virus (e.g., transmission in closed versus open spaces, sensitivity to

temperature and seasonality, aggressiveness of the virus strains).

In detail, we write the discrete time SIRD model as:

St+1 = St − βtStIt/N, (1)

It+1 = It + βtStIt/N − γIt, (2)

Rt+1 = Rt + γIt − ϑRt, (3)

Ct+1 = Ct + (1−̟)ϑRt, (4)

Dt+1 = Dt +̟ϑRt, (5)
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N = St + It +Rt + Ct +Dt, (6)

with the initial conditions S0 > 0 and I0 > 0. In addition, St ≥ 0, It ≥ 0, and St + It ≤ 1. Total

new infections at time t are given by βtStIt/N . Infectiousness resolves at the Poisson rate γ. A

person in the resolving class (Rt) either recovers (Ct) with probability 1 − ̟ or dies (Dt) with

probability ̟. The recovery rate is denoted by ϑ. In principle, the recovery rate and the death

rate could also be time-varying to reflect advancements in medical treatment as the pandemic

progresses.

The basic reproduction number R0,t =
β
t

γ
determines whether the infectious disease becomes

an pandemic, i.e., the disease goes through the population in a relatively short period of time.

This is the case for β
t

γ
> 1; otherwise, the number of infective individuals decreases to zero as

time passes. If R0,t ≤ 1, there is no pandemic, and the number of infective individuals converges

monotonically to zero.

3 The Dynamic of the COVID-19 Spread in the United

States

Conditional on keeping the effective contact rate β, with an empirically relevant reproduction

rate equal to 2, almost the entire population is infected in a matter of months. According to

leading scenarios debated in March 2020, for instance, it could not be ruled out that between

15 and 20 percent of the U.S. population could have simultaneously developed symptoms, and

that, over a short time frame, 20 percent of these symptomatic individuals would have required

hospitalization.2 These developments would have put devastating pressure on the health care

system.

Scenarios conditional on a constant β played a crucial role in motivating stark health mea-

sures in many countries—for this reason, we will study this type of scenario as a benchmark

reference below. Remarkably, however, these grim developments did not come to pass. Figure 1

superimposes data for the spread of COVID-19 in the United States, death rates and confirmed

cases, and data on the timing of stay-at-home orders and changes in residential mobility—culled

from cellphones, as captured in Google’s mobility reports, and reflecting both trips towards

2 For instance, see Ferguson et al. (2020).
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residential addresses and time spent at those addresses.3

Tracking the spread of COVID-19 is no easy feat. Even the best available data are subject to

important drawbacks. As Figure 1 shows, confirmed new cases surged in March 2020, reached

a first peak in early April, a second peak in mid-July and climbed back up through the fall.

Using confirmed new cases to measure the intensity of the pandemic is challenging as severe

rationing of testing at the beginning of the pandemic kept the data artificially low. Data on

death rates do not suffer from that problem and confirm at least three cycles for the spread

of the disease, with death rates climbing again through October, albeit with a delay relative

to the number of confirmed cases. However, the relationship between the spread of the disease

and death rates can also vary as new treatment protocols are developed or the age composition

of infected individuals evolve, given that older individuals experience greater mortality rates.

The middle panel of the figure shows the reproduction rate for the model in Equations (1)-(6)

estimated by Fernández-Villaverde and Jones (2020) based on data on death rates. The solid

black line shows the overall estimate for the United States. Two cycles are clearly visible in the

estimates of the reproduction rate. The state-level estimates show much greater variation, as

indicated by the point-wise maximum and minimum dashed red lines for these estimates.

Figure 1 also shows that stay-at-home orders were put in place at different points in time

across states, roughly within a three week window from mid-March to early April.4 These orders

had a median duration of six weeks, but the duration also varied considerably by state. Twelve

states did not impose stay-at-home orders. In the states that did, the shortest orders lasted

three weeks and the longest, for California, is still standing in parts of the state at the time of

writing.

The figure suggests that social distancing contributed significantly to slowing down the spread

of the disease. It also shows that mobility capturing time spent at home ramped up even before

the imposition of stay-at-home orders at the regional level. We will take advantage of the timing

of these events to gain some insight on the relative role of spontaneous vs. mandated social

distancing in driving the evolution of the disease.

3 The data for death rates and confirmed cases are from JHU CSSE (2020), also see Dong, Du, and Gardner (2020). The
data on stay-at-home orders are from Raifman et al. (2020). The mobility data are from Google LLC (2020).

4 The earliest stay-at-home order started in California on March 19.
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4 The Effects of Social Distancing

In this section we provide evidence that social distancing, be it spontaneous or mandatory,

has comparable epidemiological and economic effects. Specifically, based on the epidemiological

model, we derive and apply two empirical tests of the hypothesis that contacts, as proxied by

mobility data, have an effect on the reproduction rate and the initial jobless claims. First, we will

focus on changes in mobility in response to stay-at-home orders, using a difference-in-difference

approach. Then we will investigate the dynamic evolution of contagion in the two-week period

in March that preceded any mandatory measure, based on cross-sectional evidence.

For both tests below, we derive our regression framework from the SIRD model described in

Section 2. In the SIRD framework, the status of the pandemic is summarized by the reproduction

rate

R0,t =
1

γ
βt. (7)

where the effective contact rate βt is the product of contacts qt, normalized to 1, and the

probability of transmission, µt. We can therefore express the reproduction rate as

ln(R0,t) = − ln(γ) + ln(µt) + ln(qt − rt) (8)

where the term rt represents policy restrictions that can reduce the level of contacts. We will use

this equation to derive a panel regression and a cross-sectional test. Atkeson, Kopecky, and Zha

(2021) provide framework consistent with ours to decompose the reproduction rate but allow for

a feedback mechanism between the reproduction and infection rates.

4.1 Mandated Social Distancing: A Panel Regression Approach

The relationship between the reproduction rate and contacts in Equation 8 can be mapped into

the following panel regression equation:

ln(R0,s,t) = FEm + bms,t + FEs + es,t. (9)

where the subscript s denotes the geographical region and the term R0,s,t is the regional coun-

terpart to the aggregate R0,t in Equation 8. The dependent variable in our baseline, consistent

9



with the model in Section 2, is the reproduction rate estimated by Fernández-Villaverde and

Jones (2020). We average the daily estimates by these authors to the weekly frequency and use

readings for the 48 U.S. states in their dataset and the District of Columbia.5 We use monthly

fixed effects, FEm, to capture the time-varying probability of transmission µt, which might de-

pend on taking precautions such as frequent hand-washing and mask-wearing that have become

more prevalent with the spread of the virus.6 We proxy contacts qt−rt at the regional level with

the term ms,t, the Google index for residential mobility in percent deviation from its value at

the beginning of 2020, also averaged to the weekly frequency. The term FEs denotes regional-

level fixed effects, which allow for regional characteristics to influence the relationship between

contacts and mobility. Finally, es,t is a stochastic term in the relationship between contacts and

mobility. Our main interest is the regression coefficient b. An important restriction imposed by

our regression framework is that this coefficient does not vary across regions.

We estimate Equation 9 by two-stage least squares, using a dummy for the stay-at-home

orders as an instrument for residential mobility. To lessen endogeneity concerns we lag the

dummy for the stay-at-home orders by one week. At the first stage, we also allow for monthly

and regional fixed effects. The estimation sample has starting points that vary by region, in line

with regional variation in the spread of the disease. The earliest estimates of the reproduction

rate are for the state of Washington, starting on March 12, 2020. By contrast estimates of the

reproduction rate for Hawaii only start on August 7, 2020. The end point for our sample is

September 28, 2020, across all regions. Overall, the sample includes 1204 observations.

Our estimates of Equation 9, first and second stage, are shown in Table 1. In the table,

Column 1 indicates that stay-at-home orders push up the mobility index 1.85 percent. Returning

to the table, Column 2 shows that a 1 percent increase in residential mobility reduces the

reproduction rate by about 3.5 percent, all else equal. Putting the two estimates in columns 1

and 2 together, on average, the stay-at-home orders led to a decline in the reproduction rate of

about 1.85 × 3.5 ≈ 6.5 percent. In other words, starting from a basic reproduction rate of 2,

the stay-a-home order would reduce it to about 1.9. One may note that, at its peak, the index

of residential mobility increased by about 20 percent (reflecting an increase in time spent at

home). Even if all states had enacted stay-at-home orders, our estimates would attribute only

5 The dataset of Fernández-Villaverde and Jones (2020) excludes Wyoming and Montana.
6 The framework of Atkeson, Kopecky, and Zha (2021) captures these effects as a time-varying wedge.
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1.85 percentage points of this increase to those orders. Accordingly the great majority of the 20

percent increase was linked to spontaneous social distancing.

To gauge the effects of the stay-at-home orders on initial unemployment claims, we use a

regression framework analogous to that of Equation 9. We consider

U0,s,t+1 = FEm + bums,t + FEs + es,t+1, (10)

where the term U0,s,t represents initial jobless claims as a share of the working age population in

region s at time t. For the sake of comparison, we select an estimation sample with exactly the

same span of the sample for the regression of the reproduction rate. We also estimate Equation

10 by two-stage least squares, using a dummy for the stay-at-home orders as an instrument

for residential mobility. Once again, using standard Durbin and Wu-Hausman tests, we fail to

reject the null hypothesis that the instrument is exogenous. This time, probability values for

the tests are of 0.13 and 0.14, respectively. Connecting the estimates in columns (1) and (3)

of Table 1, the regression results point to an increase in the unemployment rate of roughly 0.3

(1.85× 0.153 ≈ 0.3) percentage point for every week that the stay-at-home orders were in force.

With a median duration of 6 weeks and the orders applying to much of the country, they could

have accounted for an increase in the unemployment rate of about 2 percentage points.

4.2 Spontaneous Social Distancing: A Cross-Sectional Approach

To study the effect of spontaneous social distancing, we consider a two-week period before the

imposition of any stay-at-home order—the 14-day period through March 17, which is two days

before the first stay-at-home order went into effect in California. The evidence reviewed above

suggests that much of the reduction in mobility had already occurred by the time mandatory

rules started to be imposed. Yet, this initial mobility reduction was far from homogeneous across

states.

A useful observation for our purpose is by Gollwitzer et al. (2020), who note that individual

political leanings influence social distancing practices, and through these practices also influence

health outcomes. We design a second test of our hypothesis building on this observation. Namely,

we instrument mobility with political leanings by U.S. state, as captured in the share of the vote

for the Republican candidate in the 2016 presidential election. Given our focus on the first part
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of March, before the introduction of mandatory measures, we collapse the time dimension of our

initial panel regression and rely only on the cross-sectional variation at the state level.

Starting from the regression framework in Equation 9, we now difference the specification

between two points in time on the same month. Focusing on the regression for reproduction

rate, this differencing yields

ln(R0,t,s)− ln(R0,t−h,s) = b(ms,t −ms,t−h) + es,t − es,t−h. (11)

We proceed analogously for equation 10, which focuses on initial jobless claims.

We again estimate the elasticity coefficient b by two-stage least squares. In the first stage

we use political leanings to instrument the change in mobility between two points in time. In

the second stage, we regress our dependent variable—either the reproduction rate or the initial

claims—on the fitted change in residential mobility. In this exercise, we cannot use the estimates

of the reproduction rate in Fernández-Villaverde and Jones (2020), since these start in the second

half of March for most regions. We rely instead on the estimates from Systrom, Vladek, and

Krieger (2020), which start earlier and are based on an adaptation of the estimation method of

Bettencourt and Ribeiro (2008). The middle and bottom panels of Figure 1 offer a comparison

of these alternative estimates of the reproduction rate when aggregated at the national level.

The estimates of the reproduction rate from Systrom, Vladek, and Krieger (2020) cover all

50 U.S. states and the District of Columbia. The starting date for these estimates varies by

state, in line with the differential spread of the disease. The earliest estimates are for February

19, 2020 for the state of Washington, whereas, at the other end of the spectrum, estimates for

Alaska, Idaho, and West Virginia only start on March 8, 2020.7

The message from our new exercise is loud and clear. As shown in Table 2, Column 1, there

is a strong correlation between political leanings and the change in mobility. In columns 2 and

3, the null hypothesis that the coefficient on the instrumented mobility is 0 can be rejected at

standard significance levels, despite the fact that we only have 51 observations. The elasticity

of initial jobless claims with respect to mobility in column 3 of this table, at about 0.17, is

remarkably close to the analogous elasticity in column 3 of Table 1, which is approximately 0.15.

This finding indicates that the economic costs of changes in mobility are comparable, regardless

7 Given the later start of estimates for the reproduction rate, for Alaska, Idaho, and West Virginia we use a shorter window
of nine days when computing the changes in Equation 11.
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of whether the changes are driven by mandated or spontaneous measures. However, it could still

be the case that for comparable costs, the spontaneous measures could have induced a bigger

decline in the reproduction rate. Moving back to Table 1 for the panel regression instrumented

with stay-at-home orders, Column 2 shows an elasticity of the reproduction rate with respect

to mobility of about -3.5. By contrast the analogous estimate in Column 2 of Table 2 is about

-2.3, which implies a lower effectiveness of spontaneous measures in reducing the reproduction

rate relative to mandated measures.8 In other words, for the same economic impact, a decline

in spontaneous mobility leads to a smaller decline in the reproduction rate.

5 Conclusions

We investigated empirically the epidemiological benefits and economic costs of social distancing

at the onset of the pandemic. We derived our empirical framework from the standard model,

proxying contacts using Google mobility data, and instrumenting mobility with either the stay-

at-home orders issued by individual U.S. states, or political leanings by state. Our results

suggest that, at the margin, changes in mobility through the first quarters of 2020 in the United

States had significant effects on both reproduction rates and initial jobless claims. Strikingly,

the magnitude of the economic effects is comparable whether social distancing is spontaneous or

mandated—the epidemiological effects are however stronger when social distancing is mandated.

In light of these results, it is plausible that when economic activity rebounded as stay-at-

home orders were lifted, this rebound was made possible by the observed improvement in the

epidemiological conditions. Counterfactually, if the reproduction rate of the coronavirus had

remained high or had matched the initially pessimistic scenario, the lifting of the health measured

could have been offset by a new hike in spontaneous social distancing.

8 For our comparison we used estimates based on different datasets for the mandated and spontaneous measures, the datesets
of Fernández-Villaverde and Jones (2020) and of Systrom, Vladek, and Krieger (2020), respectively. We can also estimate the
elasticity of the reproduction rate with respect to mobility for mandated measures using the dataset of Systrom, Vladek, and
Krieger (2020) and find an even more sizable elasticity of about -5.1.
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Table 1: The Effects of Stay-at-Home Orders

(1) (2a) (2b) (3)
Res. Mobility Reproduction Rate Reproduction Rate Init. Unemp Claims
2sls 1st step 2sls 2nd step 2sls 2nd step 2sls 2nd step

J.-F.V. dataset Rt.Live dataset
Stay-at-home orders 1.850∗∗

(0.000)

Residential mobility index -3.502∗ -5.059∗∗ 0.153∗∗

(0.010) (0.000) (0.000)
r2 0.918 0.153 0.402 0.610
N 1204 1204 1204 1204
p-values in parentheses
+
p < 0.1, ∗

p < 0.05, ∗∗
p < 0.01

All the regressions are run with data at the weekly frequency and include state and month fixed effects. A state-by-state
dummy that takes a value of 1 if a stay-at-home order is in force and zero otherwise is the instrument for the Google residential
mobility index in the 2-stage-least-squares regressions in columns (2a), (2b), and (3). The results in column (2a) are based on
the reproduction rate from the dataset of Fernández-Villaverde and Jones (2020). The results in column (2b) are based on the
reproduction rate from the Rt.Live dataset of Systrom, Vladek, and Krieger (2020).

Table 2: The Effects of Spontaneous Social Distancing

(1) (2) (3)
% Change Res. Mobility % Change R PPt. Change Init. Claims

2sls 1st step 2sls 2nd step 2sls 2nd step
Rt.Live dataset

% Republican Votes in 2016 -0.189∗∗

(0.000)

PPt. Change Res. Mobility -2.268+ 0.168∗∗

(0.099) (0.003)
r2 0.607 0.0439 0.140
N 51 51 51
p-values in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01

Political leanings, as measured by the share of votes for the Republican presidential candidate in the 2016 election are the
instrument for the Google residential mobility index in the 2-stage-least-squares regressions in columns (2) and (3). The results
in column (2) are based are based on the reproduction rate from the Rt.Live dataset of Systrom, Vladek, and Krieger (2020).
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Figure 1: Stay-at-Home Orders, Mobility, COVID19 Death and Infection Rates — 7-Day Moving Average
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Note: The vertical lines denoting key dates are repeated in each panel. Sources: The data for death rates and confirmed
cases are from JHU CSSE (2020). The data on stay-at-home orders are from Raifman et al. (2020). The residential mobility
data are from Google LLC (2020). The estimates of the running reproduction rate based on deaths are from
Fernández-Villaverde and Jones (2020). The estimates of the running reproduction rate based on confirmed cases are from
Systrom, Vladek, and Krieger (2020).
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Figure 2: Workplace and Residential Mobility—7-Day Moving Average
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Note: The dips in workplace mobility at the end of May, beginning of July and end of September correspond to national
holidays. Their effects are prolonged by the moving average.
Source: Google LLC (2020).
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